
AQUATIC BIOLOGY
Aquat Biol

Vol. 18: 209–215, 2013
doi: 10.3354/ab00509

Published online May 16

*Email: elizabeta.briski@dfo-mpo.gc.ca

OPENPEN
 ACCESSCCESS

© The authors 2013. Open Access under Creative Commons by
Attribution Licence. Use, distribution and reproduction are un -
restricted. Authors and original publication must be credited. 

Publisher: Inter-Research· www.int-res.com

INTRODUCTION

Invertebrates and their dormant stages are an es-
sential component of most freshwater and marine
ecosystems (Cáceres 1997). As the active invertebrate
community has a very variable distribution, both in
time and space (Arnott et al. 1999, Folt & Burns 1999),

reliable assessment of community diversity conse-
quently requires repeated sampling across multiple
locations for a prolonged period of time. Various in-
vertebrate taxa produce dormant stages such as dor-
mant eggs (also called diapausing eggs or resting
eggs), cysts, or statoblasts that often sink and accumu-
late in sediments, forming ‘egg banks’ (Brendonck &
De Meester 2003). Dormant stages provide a mecha-
nism for invertebrates to endure inhospitable envi-
ronments and to undertake natural long-distance dis-
persal (Cáceres 1997). Sediment egg banks integrate
spatial, seasonal and annual variation in the abun-
dance and distribution of invertebrates (Brendonck &
De Meester 2003, Jeppesen et al. 2003). To accurately
assess community composition for purposes of taxon-
omy, ecological biogeography, paleolimnology, nature
conservation, and evolutionary, community, popula-
tion and invasion ecology, both active and dor mant
stages of taxa should be considered (Brendonck & De
Meester 2003).
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ABSTRACT: To accurately assess community composi-
tion of invertebrates, both active and dormant life
stages should be considered. Dormant stages are typi-
cally produced as a strategy to overcome inhospitable
environmental conditions and can also facilitate spe-
cies dispersal. While they often sink and accumulate in
sediment of natural habitats forming ‘egg banks,’ dor-
mant stages are also found in the sediments accumu-
lated in ships’ ballast tanks. Recent studies have used
2 different methods to separate dormant stages from
ballast sediment to assess invasion risk associated with
ballast tanks: the colloidal silica sol Ludox HS 40 and
sugar flotation (i.e. the Onbé-Marcus method). It has
been assumed that the Ludox HS 40 method is most ef-
fective for separation but reduces dormant stage via-
bility whereas sugar flotation has lower separation effi-
cacy but higher resulting viability. We conducted a
comparative assessment of the 2 methods by separat-
ing dormant stages from 160 ballast sediments and ex-
amining resulting abundance counts, hatching re sults,
DNA extractions and PCR amplifications. We found no
difference in the results between the methods. The fi-
nancial cost of sugar flotation is lower than that of Lu-
dox HS 40, and costs can be further reduced by using
only 1 method instead of both due to lower labour
costs, particularly for a large number of samples.
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Aquatic invertebrates and their dormant stages are
frequently carried in ballast water and sediment of
commercial ships. The ability to determine invasion
risk based on identification, abundance and viability of
transported taxa can be extremely problematic (Bailey
et al. 2003, 2005, Duggan et al. 2005, 2006, Briski et al.
2010, 2011a,b,c). Recent studies assessing invasion
risk have used 2 different methods, the colloidal silica
sol Ludox HS 40 and sugar flotation (i.e. the Onbé-
Marcus method; Onbé 1978, Marcus 1990), for separa-
tion of dormant stages from sediment (Bailey et al.
2003, Duggan et al. 2006, Briski et al. 2010, 2011a);
the assumptions were that colloidal silica sol Ludox
HS 40 separates biota and dormant stages from sedi-
ment more effectively than does sugar flotation, pro-
viding more accurate abundance estimates (Pers-
mark et al. 1992, Burgess 2001), but reduces hatching
rates, thereby underestimating the viability of taxa
(Schwing hamer 1981). Furthermore, different methods
may produce an array of morphological damages on
separated organisms, limiting an accurate morpholog-
ical identification. In addition, many scientists have re-
cently started to use DNA barcoding (i.e. molecular
identification) for species identification instead of tra-
ditional morphological identification, but no study to
date has estimated the effect of a separating solution
on the success of DNA extraction or PCR amplification.
As both separation methods require up to 2 h for
the processing of 4 sample replicates (E. Briski & S.
Bailey pers. obs.), the time and re sources necessary to
process samples may decrease dramatically if only a
single method can fully characterize each sample.

Both methods rely on differences in density be -
tween inorganic and organic matter to effect separa-
tion (de Jonge & Bouwman 1977, Hairston & Van
Brunt 1994, Hairston et al. 1995, Burgess 2001). Sed-
iments are largely comprised of inorganic minerals
having specific gravities ranging from approximately
2.5 to 2.8 g cm−3 (Weast 1965), while the organic
meiofauna and dormant stages are much less dense,
having an approximate specific gravity of 1.15 g cm−3

(Price et al. 1977). Separation of organic matter oc -
curs when the density of the solution is higher than
the density of the organic matter (organics float) but
lower than the density of minerals (minerals sink;
Burgess 2001). The specific gravity of most commer-
cially available sols ranges from 1.2 to 1.4 g cm−3

(Burgess 2001), while that of a 1:1 mixture (weight:
volume) of sucrose and water is 1.22 g cm−3, making
either option effective solutions for separation. How-
ever, Schwinghamer (1981) reported that Ludox kills
foraminiferans and did not recommend Ludox for
separation of ‘soft’ meiofauna and living specimens.

Here we conducted a comparative assessment of
the 2 flotation methods by separating dormant stages
of invertebrates from 160 ballast sediments and exa -
mining resulting abundance counts, hatching results,
DNA extraction and PCR amplification. We tested
the following hypotheses: (1) colloidal silica sol
Ludox HS 40 separates more invertebrate dormant
stages from sediment than does sugar flotation; (2)
dormant stages separated by sugar flotation have
higher hatching rates than those separated by Ludox
HS 40; and (3) DNA extraction and PCR amplification
from dormant stages separated by colloidal silica sol
Ludox HS 40 and sugar flotation are of the same
quality. Consequently, we tested the hypothesis that
only 1 separation method is sufficient for comprehen-
sive ecological studies of dormant stages in sediment.

MATERIALS AND METHODS

Sample collection

As part of a larger study conducted between June
2007 and August 2009 (Briski et al. 2011a), we sam-
pled ballast sediments opportunistically from 160
ships arriving to the Great Lakes and to Pacific and
Atlantic ports in Canada. Approximately 6 kg of sed-
iment, ranging in composition from sand to silty clay,
were collected from each ship. Each sediment sam-
ple was homogenized and stored in the dark at 4°C
for at least 4 wk to break diapause of dormant stages
before experiments commenced (Grice & Marcus
1981, Schwartz & Hebert 1987, Dahms 1995). Every
sediment sample was simultaneously processed by
Ludox HS 40 and sugar flotation to avoid an influ-
ence of storage length (Briski et al. 2011b). Addition-
ally, financial costs associated with Ludox HS 40 ver-
sus sugar flotation were estimated.

Dormant stage separation using Ludox HS 40

Four 40 g subsamples were randomly separated
from each of 160 samples and sieved through a 45 µm
sieve, and the retained material was then washed into
2 to 4 centrifuge tubes (50 ml) using Ludox HS 40 with
a specific gravity of 1.31 g cm−3. The number of cen-
trifuge tubes used depended on the amount of
retained material. Approximately 30 ml of Ludox
were added into every sample tube, resulting in a total
sample volume of approximately 40 to 45 ml. The
tubes were mixed and then centrifuged at approxi-
mately 7.7 m s−2 (5 min). The supernatant was then de -
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canted and rinsed with double-distilled H2O (ddH2O)
through a 45 µm mesh and placed into Petri dishes
containing approximately 15 ml of ddH2O. Under a
dissecting microscope, dormant stages were counted
and grouped taxonomically (i.e. Rotifera, Bryozoa,
Branchiopoda and Copepoda). Every dormant stage
counted was transferred into a 1.5 ml reaction tube for
DNA extraction. An additional 12 subsamples (40 g
each) were processed for hatching experiments when
subsamples contained at least 1 dormant stage. The
subsamples processed for hatching experiments were
rinsed with sterile synthetic pond water (0 ppt; Hebert
& Crease 1980) or a sterile seawater medium.

The Ludox HS 40 sol was reused up to 3 times until
its specific gravity was lowered due to absorption of
water contained in samples. The density of the solu-
tion was monitored with a hydrometer and sieved
through 20 µm mesh before reuse.

Dormant stage separation using sugar flotation

Four 40 g subsamples of sediment were randomly
separated from each of 160 samples and sieved
through a 45 µm sieve; the retained material was
washed into centrifuge tubes using a 1:1 mixture
(weight: volume) of sucrose and water and centri -
fuged at approximately 7.7 m s−2 (5 min). The super-
natant was decanted and rinsed with ddH2O through
a 45 µm mesh and placed into Petri dishes containing
approximately 15 ml of ddH2O. As with Ludox HS 40,
dormant stages were counted under a dissecting
microscope and transferred into 1.5 ml reaction tubes
for DNA extraction. An additional 12 subsamples
(40 g) were processed for hatching experiments,
when subsamples contained at least 1 dormant stage.
The subsamples processed for hatching experiments
were rinsed with sterile synthetic pond water or a
sterile seawater medium.

Hatching experiments of separated dormant stages

Dormant stages isolated from sediment using
Ludox HS 40 and sugar flotation were immediately
placed into vials containing 15 ml of sterile synthetic
pond water or 15 ml of a sterile seawater medium.
The seawater medium was prepared from natural
seawater collected from a vessel transiting the Great
Lakes loaded with ocean ballast water, filtered
through a 2.5 µm Whatman paper filter, and diluted
to 15 and 30 ppt with sterile, synthetic pond water
(0 ppt). Four replicates of 40 g subsamples were

placed into each of the 3 media treatments (0, 15,
30 ppt) under a light:dark cycle of 16:8 h, at 20°C.
Three different salinities were used in an attempt to
match unknown species to a fresh-, brackish- or salt-
water habitat, thereby maximizing hatching success.
Controls containing only synthetic pond water were
kept in each treatment group to monitor for introduc-
tion of organisms from the environment. Vials were
checked for emergence every 24 h for the first 10 d
and every 48 h for a subsequent 10 d (Bailey et al.
2005), with media renewed every 5 d.

DNA extractions, PCRs and gel electrolyses

Separated dormant stages were rinsed thoroughly
in ddH2O several times to remove external debris
before DNA extraction (Briski et al. 2011c). DNA was
extracted from dormant stages using the HotSHOT
method (Montero-Pau et al. 2008). Individual dor-
mant stages were placed into 1.5 ml reaction tubes
containing 15 µl of alkaline lysis buffer (NaOH
25 mM, disodium EDTA 0.2 mM, pH 8.0). Once in the
buffer, the dormant stage was crushed against the
side of the tube using a sterile needle under a dis-
secting microscope. Samples were incubated at 95°C
for 30 min and placed on ice for 3 min. Finally, 15 µl
of neutralizing buffer (Tris-HCl 40 mM, pH 5.0) were
added to each tube. DNA was quantified using a
Nanovue spectrophotometer (GE Healthcare), and
fragments of the mitochondrial cytochrome c oxidase
subunit I (COI) and 16S rDNA (16S) were amplified
from each dormant stage to confirm successful DNA
extraction. Amplification was done using the univer-
sal COI primers LCO1490 and HCO2190 (Folmer et
al. 1994) and universal 16S primers S1 and S2
(Palumbi 1996). PCR reactions were performed in a
total volume of 25 µl using 5 µl of DNA extract,
1× PCR buffer, 0.13 mM trehalose, 0.1 µM of each
primer, 2.5 mM MgCl2, 0.14 mM dNTPs, and 0.4 U
TopTaq DNA polymerase (Qiagen). The thermal pro-
file consisted of a 1 min initial cycle at 94°C, followed
by 5 cycles of 94°C (40 s), 45°C (40 s), and 72°C
(1 min), 35 cycles of 94°C (40 s), 50°C (40 s), and 72°C
(1 min), and a final extension of 72°C for 5 min. PCR
products were verified on 1% agarose gel. DNA
extraction was assumed successful if the results of
PCR amplification resulted in at least 1 amplified
marker (COI or 16S). Even though not for the pur-
pose of this study, a maximum of 15 dormant stages
per different morphological group from every sample
were sequenced for species identification (results
shown in Briski et al. 2011a,b,c).
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Statistical analyses

All data were log transformed to meet assumptions
of parametric tests. Variation in dormant stage
counts, hatching experiments, and PCR amplifica-
tions between the Ludox HS 40 and sugar flotation
methods were compared using multivariate ANOVA
(MANOVA), where taxa (Rotifera, Bryozoa, Bran-
chiopoda, Copepoda) were dependent variables and
method (Ludox HS 40, sugar flotation) was the inde-
pendent variable. Three separate MANOVAs were
performed assessing dormant stage counts, hatching
rates and success of PCR amplifications. Significance
levels for statistical comparisons were adjusted for
multiple pairwise comparisons by Bonferroni-type
correction with a family-wise error rate of 0.05.

RESULTS

Both methods separated the same types of dormant
stages (i.e. Rotifera, Bryozoa, Branchiopoda, Cope -
poda; Fig. 1). Although the average abundance of
dormant stages of all taxonomic groups counted after
separation from sediment using Ludox HS 40 was
slightly higher than that counted after sugar flota-
tion, the differences were not statistically significant

(p > 0.05; Tables 1 & 2). Average abundance of differ-
ent taxonomic groups ranged from 2.29 to 67.69 and
from 2.13 to 66.52 dormant stages per 40 g of sedi-
ment after Ludox HS 40 and sugar flotation, respec-
tively (Table 1). Bryozoa had the lowest abundance,
followed by Rotifera and Branchiopoda, while aver-
age abundance of Copepoda was an order of magni-
tude higher than that of the other 3 taxonomic groups
(Table 1).

Contrary to the counting results, hatching rates of
dormant stages separated from sediment using
Ludox HS 40 were slightly lower than those sepa-
rated using sugar flotation, although again, differ-
ences were not statistically significant for any taxon
(p > 0.05; Tables 1 & 2). The average hatching rate of
dormant stages after separation from sediment using
Ludox HS 40 were 51, 18 and 52% for Rotifera, Bran-
chiopoda and Copepoda, respectively, and 53, 21 and
53%, respectively, following separation using sugar
flotation (Table 1). Bryozoa did not hatch from dor-
mant stages separated using either method (Table 1).

Similar to the counting and hatching results, we
did not find statistical differences in PCR amplifica-
tion success for any taxonomic group separated by
the 2 methods (p > 0.05;, Tables 1 & 2). The average
proportion of successful PCR amplifications from dor-
mant stages separated from sediment using Ludox

Fig. 1. Dormant stage morphotypes. (A) Various dormant stages; (B) Copepoda; (C) Bryozoa; (D) Daphnia magna (Bran-
chiopoda); (E) D. mendotae (Branchiopoda); (F) Podon intermedius (Branchiopoda); (G) Brachionus calyciflorus (Rotifera). 

Scale bars are in µm
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HS 40 was 46, 46, 45 and 32% for Rotifera, Bryozoa,
Branchiopoda and Copepoda, respectively, and
using sugar flotation, 49, 50, 42 and 36%, respec-
tively (Table 1).

The initial purchase cost of Ludox HS 40 (CAD$39.70
l–1) was 20 times higher than the cost of sucrose
(CAD$0.65 l–1), although the Ludox HS 40 was reused
3 times, lowering the cost to CAD$13.23 l–1. Further-
more, processing time was identical for both methods
at 8 h per 16 subsamples of each sediment, which
resulted in 1280 h for 160 samples per method. As
 minimum hourly wage in Canada is above CAD$10.00,
the costs of labour for processing of 160 samples by
only 1 method were above CAD$12800 CAD.

DISCUSSION

Our study showed that both methods, the colloidal
silica sol Ludox HS 40 and sugar flotation, are
equally suitable for separation of dormant stages
from sediment to assess abundance and viability, as
well as to conduct genetic studies. As both separation
methods rely on differences in density between min-
erals, separation solution and organic matter to effect
separation (Hairston & Van Brunt 1994, Hairston et

al. 1995, Burgess 2001), the efficacy of dormant stage
separation may be maximized by continually con-
firming the specific gravity of the colloidal silica sol
or sucrose solution. Excessive reuse of the colloidal
silica sol Ludox HS 40 or inaccurate measurements of
sugar and water in the sucrose mixture may lead to
lower specific gravity with consequent dispersion of
meiofauna and dormant stages throughout the col-
umn of the separation solution instead of rising to the
upper surface. The specific gravity of the separation
solutions can be easily increased to overcome this
problem by adding concentrated Ludox HS 40 or
additional sugar.

Contrary to ‘soft’ meiofauna, dormant stages of
invertebrates are protected by a layered shell resist-
ant to ruptures when squeezed or prodded by a sharp
object (Lavens & Sorgeloos 1996, Marcus 1996, Dha-
rani & Altaff 2004). While many active marine inver-
tebrates and algae may be damaged by exposure to
the highly saturated solutions used to separate biota
from sediment (Price & Reardon 1978, Schwing-
hamer 1981), most dormant stages can withstand
very harsh environmental conditions such as desicca-
tion, large fluctuations in salinity and anoxic condi-
tions (Lavens & Sorgeloos 1996, Cáceres 1997, Bailey
et al. 2004, Schröder 2005). As a result, osmotic stress
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Taxon Dormant stage counts Hatching experiments PCR amplifications

                             Ludox HS 40     Sugar flotation            Ludox HS 40    Sugar flotation          Ludox HS 40    Sugar flotation

Rotifera                5.06 (±0.94)       4.86 (±0.89)              2.59 (±1.40)        2.60 (±1.40)             2.35 (±0.70)      2.40 (±0.71)

Bryozoa               2.29 (±0.43)       2.13 (±0.40)                       0                          0                      1.05 (±0.16)      1.07 (±0.17)

Branchiopoda     10.26 (±2.35)       9.73 (±2.17)              1.89 (±0.59)        2.07 (±0.52)             4.57 (±1.05)      4.07 (±0.96)

Copepoda          67.69 (±15.76)   66.52 (±15.85)          35.15 (±23.44)    35.36 (±23.51)           21.66 (±5.25)      23.87 (±5.72)

Total                   72.37 (±14.60)   70.75 (±14.66)          27.61 (±17.85)    27.71 (±17.90)           23.92 (±4.93)      25.08 (±5.20)

Table 1. Mean (±SE) number of dormant stages separated from sediment, hatched in hatching experiments, and from which 
DNA was amplified, after separation using the colloidal silica sol Ludox HS 40 and sugar flotation methods

Dependent variable Dormant stage counts Hatching experiments PCR amplifications
                                              Value     df       F            p               Value     df       F            p               Value     df       F            p

Univariate F-tests
Rotifera                                              1     0.043     0.837                           1     1.000     0.423                           1     0.215     0.647
Bryozoa                                             1     0.031     0.860                          na      na          na                             1     0.141     0.711
Branchiopoda                                   1     0.123     0.728                           1     1.000     0.423                           1     0.045     0.834
Copepoda                                          1     0.091     0.764                           1     0.151     0.735                           1     0.070     0.793

Multivariate test
Wilks’ lambda                    0.987      4     0.113     0.977            0.039      3    12.346    0.197            0.989      4     0.055     0.994

Table 2. Multivariate ANOVA addressing the effect of separation method (colloidal silica sol Ludox HS 40 and sugar flotation) 
on dormant stage counts, hatching experiments, and PCR amplifications for diversified taxa. na: not applicable
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or toxicity induced by suspension in a separation
solution may not damage or reduce viability of the
embryo inside the shell (Lavens & Sorgeloos 1996).
We suggest that the hatching results in our study,
ranging from 0 to 53%, were not influenced by the
separation solution, but were an effect of dormancy
itself. The physiology of dormant stages is very com-
plex, with hatching success depending on the pres-
ence of appropriate cues to terminate dormancy, en -
ergy content of the dormant stage, and hatching
conditions, with low hatching rates being a common
result. Hatching results reported in the literature
range from 0 to 40% (Schwartz & Hebert 1987,
Lavens & Sorgeloos 1996, Hairston et al. 1999, Bailey
et al. 2003, Simm & Ojaveer 2006).

Correct identification of species is essential for eco-
logical studies, and a recent study has demonstrated
that DNA barcoding identifies nearly twice the num-
ber of species from invertebrate dormant stages as
does traditional morphological taxonomy (Briski et
al. 2011c). We suggest that the DNA extraction and
PCR amplification results in our study, ranging from
0 to 50%, were not influenced by the separation solu-
tion. Successful molecular identification may be lim-
ited if extracted DNA is degraded (Briski et al. 2011c)
or if inhibitors of DNA extraction and/or PCR ampli-
fication, such as sediment, iron, bacterial cells, or
other organic compounds, are present (Wilson 1997).
Such inhibitors are often found in ballast tanks. Fur-
thermore many dormant stages were visibly
degraded or damaged.

Our study demonstrated that there is no need to ap-
ply both the colloidal silica sol Ludox HS 40 and sugar
flotation methods on the same sediment sample to ac-
curately estimate density and viability of invertebrate
dormant stages in sediment or to conduct genetic
studies on dormant stages. Researchers can reduce
time and costs by using only a single method. Al -
though our study compared the 2 methods using
ships’ ballast sediment, the results should be equally
applicable for sediment samples collected in natural
habitats, facilitating early detection of new invading
species and determining the invasion history of spe-
cies in sediment cores. In addition to invasion eco logy,
our results are equally applicable to other ecological
studies such as taxonomy, ecological bio geography,
paleolimnology, nature conservation, and evolution-
ary, community and population eco logy.
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